
AFRL-AFOSR-JP-TR-2016-0049

Understanding how to build long-lived learning collaborators

Kenneth Forbus
NORTHWESTERN UNIVERSITY

Final Report
03/22/2016

DISTRIBUTION A: Distribution approved for public release.

AF Office Of Scientific Research (AFOSR)/ IOA
Arlington, Virginia 22203

Air Force Research Laboratory

Air Force Materiel Command



REPORT DOCUMENTATION PAGE 
Form Approved  

OMB No. 0704-0188 

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information.  Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and 
Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person 
shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.   
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.   
1.  REPORT DATE (DD-MM-YYYY) 

23-06-2016 
2.  REPORT TYPE 

Final  
3.  DATES COVERED (From - To) 
01 Sep 2010 – 1 Mar 2016 
 

4.  TITLE AND SUBTITLE 
 

Understanding how to build long-lived learning collaborators 
 

5a.  CONTRACT NUMBER 
FA2386-10-1-4128 

5b.  GRANT NUMBER 
Grant AOARD-104128 

5c.  PROGRAM ELEMENT NUMBER 
61102F 

6.  AUTHOR(S) 
 

Prof. Kenneth Forbus 
 
 

5d.  PROJECT NUMBER 

5e.  TASK NUMBER 

5f.  WORK UNIT NUMBER 

7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Northwestern University 
Ford 3-320, 2133 Sheridan Road 
Evanston, IL 60208 
United States 

 

8.  PERFORMING ORGANIZATION 
     REPORT NUMBER 
 

N/A 
 

9.  SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 

AOARD 
UNIT 45002 
APO AP 96338-5002 

 

10. SPONSOR/MONITOR'S ACRONYM(S) 
 

AFRL/AFOSR/IOA(AOARD) 

11.  SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

AOARD-104128 
 

12.  DISTRIBUTION/AVAILABILITY STATEMENT 
Distribution A: Approved for public release. Distribution is unlimited 

13.  SUPPLEMENTARY NOTES 
14.  ABSTRACT  
This project conducted basic research aimed at creating software systems that can collaborate naturally with people 
over extended periods of time. This involved investigating how to make a habitable combination of natural language 
and sketch understanding that supports interactive learning of complex domains, including giving advice, learning 
by reading, and learning by demonstration. We developed the notion of type-level qualitative representations that 
significantly improve expressive power and compactness, both of which improve reasoning and learning, while also 
providing a simpler path for learning qualitative models from natural language. We also made progress on using 
qualitative representations for strategic thinking, where continuous processes and causal knowledge about 
quantities provide a higher level of description, within which specific planning goals arise. This includes expressing 
goals in terms of maximizing/minimizing quantities, recognizing and analyzing tradeoffs, and encoding broader-
scale strategies in terms of continuous processes. We explored how to extend the Companion cognitive 
architecture to incorporate more self-learning, including automatic detection of near-miss examples to improve 
discrimination in learning, and dynamic encoding strategies to improve visual encoding for learning via analogical 
generalization. We showed that spatial concepts can be learned via analogical generalization. Moreover, we 
explored learning sketched concepts via analogy at a larger scale than ever before, using a 20,000 sketch corpus to 
examine the tradeoffs involved in visual representation and analogical generalization. 

 
 
 
 
 
 

15.  SUBJECT TERMS 
Artificial Intelligence, Computer Science, Autonomous Agents and Multi-Agent Systems, Machine Learning 

16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION OF 
ABSTRACT 

 
SAR 

18.  NUMBER 
OF PAGES 

 
25 

 

19a.  NAME OF RESPONSIBLE PERSON 
Brian Lutz, Lt Col, USAF a. REPORT 

 
U 

b. ABSTRACT 
 

U 

c. THIS PAGE 
 

U 19b. TELEPHONE NUMBER (Include area code) 
+81-3-5410-4409 

 Standard Form 298 (Rev. 8/98) 



14.  ABSTRACT. 

DISTRIBUTION A: Distribution approved for public release.



1 
 

Final Report for AOARD Grant FA2386-10-1-4128  
 

Towards Long-Lived Learning Software Collaborators 
 

March 16, 2016 
 
Name of Principal Investigators (PI and Co-PIs): Kenneth D. Forbus, Thomas R. Hinrichs 

- e-mail address : forbus@northwestern.edu 
- Institution : Northwestern University 
- Mailing Address : 2133 Sheridan Road, Evanston, IL, 60208 
- Phone : 847.491.7699 
- Fax : 847.491.4455 

 
Period of Performance:  Sept 29 2010-March 28 2016 
 
Abstract 
 
This project conducted basic research aimed at creating software systems that can collaborate 
naturally with people over extended periods of time.  This involved investigating how to make a 
habitable combination of natural language and sketch understanding that supports interactive learning 
of complex domains, including giving advice, learning by reading, and learning by demonstration. We 
developed the notion of type-level qualitative representations that significantly improve expressive 
power and compactness, both of which improve reasoning and learning, while also providing a 
simpler path for learning qualitative models from natural language. We also made progress on using 
qualitative representations for strategic thinking, where continuous processes and causal knowledge 
about quantities provide a higher level of description, within which specific planning goals arise.  
This includes expressing goals in terms of maximizing/minimizing quantities, recognizing and 
analyzing tradeoffs, and encoding broader-scale strategies in terms of continuous processes. We 
explored how to extend the Companion cognitive architecture to incorporate more self-learning, 
including automatic detection of near-miss examples to improve discrimination in learning, and 
dynamic encoding strategies to improve visual encoding for learning via analogical generalization.  
We showed that spatial concepts can be learned via analogical generalization.  Moreover, we 
explored learning sketched concepts via analogy at a larger scale than ever before, using a 20,000 
sketch corpus to examine the tradeoffs involved in visual representation and analogical generalization.   
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1. Introduction 
 
The specific aims of this research have been to explore how to create software social organisms 
(Forbus, in press) that can collaborate with people using natural modalities, working as apprentices to 
build competence and trust, while maintaining and adapting themselves over time.  This is in stark 
contrast to today’s model of intelligent system as tool or specialized, single-purpose system.  For 
example, both Watson and AlphaGo are stunning achievements in terms of their capabilities on 
specific tasks (factoid question-answering and playing Go, respectively).  However, neither system 
can do what the other does.  And both systems were the result of large teams of experts, manually 
tweaking and changing their internals, retraining, and modifying as needed until the required standard 
of performance – as measured by the team of experts, not the system itself – was met. For systems that 
must operate in rapidly changing tasks and environments, and learn new tasks on the fly, such large 
support staff and manual fiddling with their internal structure does not scale. Instead, we are trying to 
learn how to create AI systems that are organisms, i.e. capable of autonomy, maintaining themselves 
and improving themselves, with interaction only in terms of the natural interaction modalities that we 
would use with a human collaborator. This places a larger burden on communication, i.e. being able to 
communicate complex ideas through language that otherwise might take hundreds or even thousands 
of examples for a system to learn on its own.   
 
Creating software social organisms is an extraordinarily difficult problem, and while we made 
important progress, much work lies ahead. In fact, Forbus (in press) argues that human-level AI will 
simply be sufficiently smart software social organisms, which indicates how ambitious the extreme 
version of this goal is. Importantly, though, we believe that there will be multiple intermediate points 
that lead to useful applications along the way.   
 
Our specific objectives, and major results concerning them, were: 

1. Scale up analogical processing to enable learning substantial bodies of knowledge.  We 
showed that spatial concepts from a strategy game could be learned via automatically 
constructed representations generated from sketching over a game’s map.  We further 
showed that analogical learning is promising for learning spatial concepts at a larger scale, 
using an independently developed corpus of 20,000 sketches. This is radically larger, in both 
number of examples and complexity of examples, than have ever been tackled with 
analogical learning before. While we have been only partly successful on that corpus to date, 
this has led to several important insights about encoding at larger scales that we believe are 
domain-general, as well as leading us to broaden out our visual representation vocabulary in 
ways that provide stepping stones to learning from camera inputs in the future. 

2. Investigate how to make a habitable combination of natural language and sketch 
understanding that supports interactive learning of complex domains.  This has involved 
developing new representations for expressing the dynamics of complex domains. We view 
our development of type-level qualitative representations as a breakthrough, in that they 
enable constructing qualitative models for larger problems, including tracking what is 
happening in worlds that are too complex to record everything, reasoning about larger-scale 
systems, and simplifing learning qualitative models from natural language.  We have also 
shown that qualitative models can be used to express goals concerning continuous properties 
(e.g. maximizing income, territorial expansion, minimizing expenses), detecting and 
analyzing tradeoffs, and expressing larger-scale strategic ideas (e.g. first expand to control 
the most territory that you can, and smoothly switch over to developing your economy, is a 
common strategy in many games).   

3. Extend our Companion cognitive architecture to incorporate self-learning, including 
encoding strategies and memory organization policies.  The lack of a cluster for several 
years left this aspect on back-burner, although we did make progress on dynamic encoding 
strategies for sketches.  Moreover, we built out the architecture itself with worker agents for 
offline learning, and developed experiment plans where a Companion can basically organize 
its own workload, given a number of nodes to work with, to carry out larger-scale 
experiments. 
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We view this research as having several significant benefits for the Department of Defense.  First, 
software collaborators would be a fundamental advance in intelligent systems, providing a substantial 
enhancement in autonomy and reducing the need for expert technical support staff to adapt or 
re-engineer a system for changing environments.  Second, incorporating human-like reasoning and 
learning, via qualitative representations and analogical reasoning, as described below, should make 
software more effective and trusted collaborators.  Their result should be close enough to our own 
ways of reasoning that we will understand (and thus trust) the concepts that they learn and the 
explanations that they give for their advice or actions.  However, we may be able to deliberately 
engineer out some known human weaknesses (e.g. confirmation bias, working memory limitations) to 
provide complementary strengths.  Third, the apprenticeship model for training intelligent systems 
should, again, reduce the need for technical support staff, and build trust in intelligent systems via 
experience, working alongside them. 
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2. Approach 
 
Our research used the Companion cognitive architecture (Forbus et al., 2009), which is being built 
with the goal of creating software social organisms.  The hypotheses that we are exploring in this 
architecture include 

 Rich, domain-independent relational representations are essential for rapid learning and 
flexible performance.  Of special importance are qualitative representations, which are used 
to symbolically represent and reason about continuous quantities, processes, shape, and 
space. 

 Analogical reasoning and learning is central in human cognition. 
 Natural language and sketching are important modalities for communicating naturally with 

collaborators and trainers. 
 An important part of an organism’s mental life is formulating new learning goals and 

adapting its processes to perform more effectively and efficiently. 
 
The rest of this section discusses the ideas concerning relational representations, especially qualitative 
representations, analogy, and the testbed we are using to explore these ideas. 
 

2.1. Rich, domain-independent relational representations.   
There has been a surprising de-evolution of representational sophistication in AI, especially in 
machine learning.  The mathematical tractability of feature vectors, and computational support 
through GPUs, has seduced many researchers into exploring vector representations even in situations 
where there is strong evidence that human cognition involves relational representations.  We believe 
that this is the reason why, for example, deep learning systems require massive amounts of data to 
operate, far more than people ever see in a lifetime.  We think an important job of AI is to explicate 
what representations are needed to carry out robust, flexible intelligence.  This includes, for example, 
being able to represent and reason about causality, lines of argumentation, evidence, planning, and 
other constructs which lie outside the expressiveness that vectors can provide.  In our work we use 
the Cyc knowledge base contents as a starting point, specifically ResearchCyc, since it is freely 
available for research and incorporates many more axioms and mappings between KB concept and 
natural language than any other knowledge base available.  We do end up extending it as needed, and 
in some areas substantially.  The single biggest area of expansion is in qualitative representations, 
which we view as so important that we focus on them next. 
 

2.2. Qualitative Representations 
Many aspects of the physical, social, and mental realms are continuous.  Physical examples include 
quantities like temperature, pressure, and land area.  Social examples include degree of blame, 
affinity, and depth of friendship.  Mental examples include difficulty of a task, capability for solving 
particular kinds of problems, and available mental energy.  While numerical values are sometimes 
available for some of these quantities (e.g., for physical quantities), much of what we know about 
them is more abstract.  We may be able to provide estimates of relative blame in a situation, for 
example, while not being able to confidently give a numerical value for responsibility to each those 
involved.  We know causal relationships involving such abstract quantities, e.g. we know that the 
more tired we are, the harder a problem will seem, even if we cannot even specify units for these 
quantities in any sensible way. Thus something beyond traditional mathematics is needed to capture 
such human concepts.  Qualitative representations were developed for exactly this purpose. A 
number of qualitative representations for quantity have been developed, for example, including sign 
values and ordinal relations, which capture important properties of reasoning about continuous 
parameters (e.g. continuity, partial information) with much less information.  We use Qualitative 
Process (QP) theory (Forbus, 1984), which also provides a causal, qualitative mathematics and a 
notion of continuous process that serves as ontological mechanism underlying causality.  QP theory 
has been used to model a wide range of phenomena, both physical and social (Forbus, in preparation).  
In this project we extend both the ideas of QP theory to provide type-level representations, and show 
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how they can be used in strategic thinking. 
 
Another hypothesis that we are building on is that QP theory provides an inferential semantics for 
natural language.  Decades of research, by us and by others, suggests that QP theory is sufficient to 
capture a wide range of novice and expert reasoning about continuous dynamical systems, including 
simple physics and chemistry, various engineering domains, and even aspects of social phenomena 
(e.g. blame assignment, moral decision-making).  Moreover, our prior work, and our current work on 
a parallel project, have shown that constituents of QP theory can be identified with particular syntactic 
patterns, and mapped consistently onto FrameNet semantics (Kuehne & Forbus, 2004; McFate et al. 
2014; McFate & Forbus, 2015).  For example, the QP theory notion of an indirect influence (aka 
qualitative proportionality) can be captured by a QP Frame whose core frame elements link two 
quantity frames, e.g.  
• Core Frame elements: Constrained, Constrainer, Sign 
• Ex: As the temperature of the steam rises, the pressure in the boiler increases. 
We built on this hypothesis in this project, showing how QP knowledge could be extracted from 
natural language advice and from reading the Freeciv manual. 
 

2.3. Analogy 
Gentner’s (1983) structure-mapping theory proposed that analogy consists of finding correspondences 
between structured, relational representations.  These correspondences are also used in finding 
differences – candidate inferences that suggest ways to project information from one description to 
another.  Gentner (2003) further proposes, and we concur, that analogy is a core operation in human 
cognition more broadly.  There is evidence that the same laws of structure-mapping govern 
comparisons involved in high-level vision, similarity judgments, reasoning, problem-solving, and 
conceptual change.  Viewed from an AI perspective, this model of analogy has several important 
advantages.  First, similarity is not an arbitrary term that can be defined any way one likes – people 
behave concerning similarity judgments in ways predicted by structure-mapping theory.  This means 
that similarity models based on feature vectors, for example, will tend to have problems when 
compared closely with human performance, making their results less likely to be trusted.  By contrast, 
structure-mapping models have been used to both successfully explain existing phenomena and to 
successfully predict new phenomena (Forbus et al., in press). Second, they have been successfully 
used in AI performance systems, including some implemented by others (e.g. IBM’s Watson used a 
specialized version of SME as one of its methods of checking candidate answers). Each model 
corresponds to a specific process involved in analogy: 

 SME (Falkenhainer et al., 1989; Forbus et al., in press) performs analogical matching.  It 
produces one or more mappings, each of which consists of correspondences indicating what 
statements or entities in one description align with the other, candidate inferences that 
indicate how non-mapped information can be projected from one description to the other, and 
a numerical similarity score that indicates how well the two descriptions align. 

 MAC/FAC (Forbus et al., 1995) performs analogical retrieval.  Given a structured 
representation as the probe, it first computes a simple vector version to compare, 
conceptually in parallel, with vectors corresponding to all of the cases stored in a case library.  
Up to three cases are returned, and their structured representations are then compared with 
the probe via SME, again in parallel.  The case with the best mapping, or another one or two 
if very close in score, is returned as the retrieved case.   

 SAGE performs analogical generalization.  Each concept to be learned by SAGE has a 
generalization context that is a case library containing both generalizations and unassimilated 
examples.  When a new example is added, MAC/FAC is used to retrieve the closest 
generalization or example.  If sufficiently close, the example is assimilated into the 
generalization, if that is what was retrieved, or the overlap between the new and old example 
are used to create a new generalization, otherwise. Non-identical entities are replaced with 
generalized entities, which are still concrete but unidentified constants – SAGE does not 
introduce logical variables.  Generalizations are probabilistic, in that frequency information 
is tracked for each aligned statement in a generalization.  Low-frequency information does 
not influence matches, and eventually “wears away” over time.  SAGE can handle 
disjunctive concepts, via maintaining multiple generalizations, and handle outliers, via 
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storing unassimilated examples. 
 
Since these models rely upon each other, we consider them an analogy stack, the start of a new 
technology for analogical reasoning and learning grounded solidly in cognitive science.  
Understanding the properties of analogical processing, and how to build systems that reason and learn 
via analogy at scale, is one of the central research challenges we are tackling.  This fits 
synergistically with our focus on rich, relational representations – such representations are perfect 
grist for analogy, and analogical processing can provide flexible ways to use such representations, to 
complement traditional first-principles logical and abductive inference. 
 

2.4. Freeciv: Strategy Game as Testbed 
For exploring interactive and offline learning, it is 
useful to have a complex simulated world, where the 
complexities have reasonable analogs to real-life 
systems and situations.  We used the open-source 
strategy game, Freeciv 1  as our testbed.  The 
Civilization line of games enable players to control an 
entire civilization, from stone-age routes to the space 
age.  Initially the world map is unknown, requiring 
exploration both on land and sea.  Players create 
cities and improvements, transportation networks, and 
establish trade and diplomatic relationships with other 
players (which may be people or bots).  There is, naturally, warfare, requiring that players master 
military tactics, handle guns/butter tradeoffs, and do strategic planning.  
 
From an AI research perspective, Freeciv has several important advantages.  First, playing it well 
requires mastering a large set of spatial concepts and problems, including types of terrain, city 
placement, and construction of transportation networks.  It includes complex dynamics, e.g. units and 
improvements take time and resources to build.  Military technologies change considerably over the 
span of history, requiring adaptation of tactics and concepts (e.g. from archers and chariots to aircraft 
and nuclear weapons).   
 
We note that others have used strategy games like Freeciv, albeit with different goals in mind.  For 
example, (Branavan et al., 2012) worked on learning using Freeciv as a domain.  Their approach was 
to “read” the Civilization 2 manual to find mappings between words and game features in their 
simulation. This was used to tune a heuristic evaluation function, rather than to construct a model of 
the game.  They restricted their model to a much smaller map than is standard, and halted the game 
after 75 turns, which factors out most of the complex dynamics of the game.  While their system was 
able to perform well on this scaled down game, it required many trials to learn the game, required 
using the game engine to do lookahead search, and it cannot explain its models nor the reasons for its 
actions.  By contrast, we used, and plan to continue using, Freeciv as a platform for learning more 
human-like representations, reasoning, and learning strategies. 

3. Results and Discussion 
 
We made progress on four fronts in this project: qualitative modeling, natural interaction, interactive 
learning, and self-directed learning.  We discuss each in turn.   
 

3.1. Qualitative Modeling 
We have two ideas that we think are breakthroughs in this area, type-level qualitative representations, 
and qualitative models for strategic thinking.  We discuss each in turn.  The extraction of qualitative 
models from natural language is discussed under Natural Interaction. 
 

                                                        
1 Freeciv.org 
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Type-level qualitative representations: Traditionally, qualitative reasoning has been performed by 
instantiating logically quantified model fragments from domain theories to produce propositional 
representations of all of the causal and constraining relationships between the entities of a situation.  
This works well in many scientific and engineering domains, where the starting point of an analysis is 
the equivalent of a blueprint of a system, something that stays fixed through an analysis.  But in 
dynamic worlds (like strategy games and our own world), objects come and go, and are created and 
destroyed by us and by others.  Reasoning about the properties of things that do not yet exist is a 
necessity.  The size of these worlds means that explicitly modeling every relationship between every 
entity does not scale well.  Consequently, we started exploring higher-order qualitative reasoning, 
using type-level qualitative representations.   
 
The key ideas of our approach are the following: 

1. Avoid propositionalization whenever possible.  By constructing explicit type-level models, 
we can reuse the same model over different parts of a situation over and over again as 
needed. 

2. Use type-level predicates as an expressive formalism for planning, learning, and natural 
language semantics.   

3. Integrate discrete actions more fully with influences and continuous processes.  Previous 
integrations of actions and processes (e.g. Forbus, 1989; Drabble, 1990) used non-durative 
actions. 

4. Provide underspecified causal representations suitable for learning and language 
understanding. 

 
 
Here is an example of how type-level qualitative predicates are defined in terms of instance-level 
predicates:  
(qprop+TypeType <constrained> <constrainer> <constrained-type> 
                   <constrainer-type> <reln>) 
  (forall ?x 
     (forall ?y 
       (implies (and (<constrained-type> ?x)(<constrainer-type> ?y)(<reln> ?y ?x)) 
                  (qprop+ (<constrained> ?x)(<constrainer> ?y))))) 
 
How much of a savings can type-level representations provide?  The table below shows the number 
of type-level influences versus propositional influences in a typical Freeciv game after 75 turns.  
There is a factor of 20 fewer type-level inferences, and the effect will be even stronger deeper into the 
game. 
 

 
 
Connecting actions to qualitative models: Using a qualitative model to drive behavior requires 
explicitly representing the effects of primitive actions on continuous quantity fluents.  We introduced 
new vocabulary to express these instantaneous positive or negative effects, for example: 
 
(actionPositivelyAffectsQuantity 
   ((MeasurableQuantityFn cardinalityOf) FreeCiv-City) 
   (doBuildCity ?settler21 ?city21)) 
 
which says that the doBuildCity action increases the number of cities.  With this sort of 
information, an agent can infer how to manipulate independent variables to transitively influence goal 
quantities.  Moreover, because these connections are simple declarative facts, they are far easier to 
learn from observation than complex plans.  More in-depth discussion of these ideas can be found in 

Type-level influences Propositional Influences

i+TypeType 4 i+ 36

i-TypeType 0 i- 0

qprop+TypeType 10 qprop 210

qprop-TypeType 7 qprop- 179

Total: 21 Total: 425
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(Hinrichs & Forbus, 2012b). 
 
Qualitative models for strategic thinking: Complex and dynamic problems cannot be planned in detail 
from an initial state to some ultimate goal state.  Rather than focus on learning an inscrutable 
evaluation function to guide an agent through such a state space, we instead explored representations 
and techniques for planning with explicit strategies.  Strategies have the benefit of being 
communicable and instructable, providing concise explanations of motivations, and being general, or 
reusable, across domains. 
 
Our key contributions in strategic thinking are: 

1. An enumeration and analysis of types of goal tradeoffs that propose and constrain strategies, 
2. A formulation of strategy as the relative prioritization, decomposition, and scheduling of 

competing goals, and 
3. The application of qualitative process modeling to the activation of strategies and 

prioritization of goals. 
 
We found that the type-level representation of goals allowed for a new kind of goal decomposition.  
Because type-level goals are implicitly quantified over sets of entities, such as cities or locations, it is 
possible to decompose a goal by subdividing its scope.  This lets different entities have different or 
shifting priorities for the same goal type, yielding intuitive kinds of strategies, such as functionally 
specializing entities. 
 
The conception of strategies as policies for resolving goal tradeoffs, rather than as search control 
heuristics, led to the treatment of goal activation (or priority) as a kind of quantity amenable to being 
influenced through processes.  This is an economy of mechanism that treats meta reasoning much the 
same as object-level reasoning.  Moreover, because processes are quantity-conditioned on the 
qualitative state of the domain environment (in this case, a game state), strategies themselves are 
dynamically activated and deactivated as the environment changes.  For example, here is a type-level  
process representation of a strategy for shifting the priority of goals based on the game state being in 
the ExpansionPhase.: 
 
(isa BuildGrow StrategyType) 
;; roles and types of participants: 
(participantType BuildGrow doneBy Player) 
(participantType BuildGrow initialGoal Goal) 
(participantType BuildGrow deferredGoal Goal) 
(associatedRoleList BuildGrow (TheList doneBy initialGoal)) 
;; relations between participants: 
(participantConstraint BuildGrow  
  (goalTradeoff initialGoal deferredGoal PartialProgressiveTradeoff)) 
(participantConstraint BuildGrow  
  (activeMF (MFInstanceFn ExpansionPhase (TheList doneBy)))) 
;; influences on goal activation: 
(consequenceOf-TypeType BuildGrow 
  (c+ ((MeasurableQuantityFn goalActivation) initialGoal)  
      (Percent 100))) 
(consequenceOf-TypeType BuildGrow 
  (c+ ((MeasurableQuantityFn goalActivation) deferredGoal)  
      (Percent 0))) 
 
Such a strategy can be used to resolve a progressive tradeoff between expanding a Freeciv civilization 
by building cities and then focusing on growing the individual cities.  The qualitative representation 
of strategies is described in more detail in Hinrichs & Forbus (2015). 
 
Qualitative process representations serve another objective in our research: to support long-term 
learning by breaking the learning problem down to small pieces that can be learned and 
communicated independently.  We have pursued this in the context of learning by demonstration, 
where the agent focuses on learning a qualitative model of the game initially, rather than on playing 
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well per se. 
 
Learning at this level lets an agent acquire independent facts piecemeal that combine together to form 
a model: 

 Qualitative influences are relations between quantities in the game.  The hypothesis space 
between any two game quantities is sufficiently small that it usually does not take many trials 
to resolve their qualitative relation. 

 Parametric decision points are parameters that are revised periodically, as triggered by 
events or conditions in the game, for example, setting the production queue whenever a city 
is first built.  Learning the event triggers for decision points is a small association that is 
critical for learning to play the game. 

 Events are explicit changes in state.  To the extent that the environment (game) signals 
explicit events, these often correspond to limit points in qualitative processes.  This 
expectation reduces the search for activating conditions on processes. 

 Domain-specific operationalizations are task expansions that can be learned by 
demonstration.  Most commonly, these are hierarchical task network methods for achieving 
the preconditions of a primitive action.  These are learned, like macros, by searching the 
execution trace backwards from the executed primitive, applying relevance heuristics, and 
lifting the immediately prior action sequence to make a new indexed plan.  This sort of 
learning is limited to tasks that are oriented around very concrete primitive actions.  Other 
problems are not so easily addressed by acquiring simple facts or task definitions. 

 
Consider, for example, the problem of defense.  In experiments involving resource allocation 
strategies, most of the trials performed as predicted, but some did very poorly.  In the few that did 
poorly, we realized that the enemy civilizations were particularly aggressive, and because 
Companions weren’t defending themselves, their civilizations were wiped out before turn 100, when 
measurements were made.  Defense is an interesting example of how strategic thinking deviates from 
traditional AI notions of planning.  Defense is not an action.  No single primitive or durative action 
suffices to define defense.  Defense isn’t a state to achieve, it’s more about preventing bad events 
and states. If we think in terms of defense as reducing vulnerability, a quantity associated with 
anything that can be attacked, then type-level model fragments can be defined to express causal 
constraints on vulnerability.  For instance, here is a type-level model fragment that expresses the 
notion of Defending, with comments explaining the meaning of these statements in English: 
 
(isa Defending ModelFragmentType) 
;; Defending is a model fragment, i.e. something used to assemble models of specific situations. 
(genls Defending ProtectingSomething) 
;; Defending is a subclass of the Cyc concept ProtectingSomething.  
(participantType Defending protector-Agentive FreeCiv-MilitaryUnit) 
(participantType Defending objectProtected FreeCiv-Actor) 
;; The kinds of participants are military units and actors within the FreeCiv portion of the ontology we  
;; developed.  The 2nd arguments are the relationships that indicate which participant is which. 
(associatedRoleList Defending (TheList protector-Agentive objectProtected)) 
;; This indicates the roles above are the complete set of participants. 
(participantConstraint Defending 
  (and (objectFoundInLocation protector-Agentive objectProtected)  
          (different protector-Agentive objectProtected))) 
;; The protector must be in the same location as the protected, and the defender is different from that defended. 
(consequenceOf-TypeType Defending 
  (qprop- ((QPQuantityFn Vulnerability) objectProtected) 
                (DefensiveStrengthFn protector-Agentive FreeCiv-MilitaryUnit))) 
;; Defending causes the vulnerability of the defended to be lower, as a function of the defensive strength of the 
;; defender.  The function QPQuantityFn coerces a Cyc quantity type to a function whose range are fluents of 
;; that quantity type. 
 
Similar model fragments are used to capture the effects of city walls on reducing the vulnerability of a 
city, and the effect of treaties on reducing HostilityLevel, which again reduces vulnerability.  
Incorporating these model fragments into the Companion’s qualitative model of the domain enabled it 
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to build defending units and walls, and accept treaties, when appropriate, leading to survival in the 
scenarios mentioned earlier.  This is of course just a starting point: Strategies are hierarchical, e.g. 
when deciding to conquer the continent its civilization started on, a Companion will take actions that 
will increase hostility levels, something the qualitative model should be able to predict, and include in 
its plans actions that will bolster its defenses in advance. 
 

3.2. Natural Interaction 
Multimodal deictic reference.  Teaching an AI system about a 
simulated world is greatly facilitated by being able to refer to objects in 
a shared world.  Mappings between game-specific meanings of words 
(e.g. “explorer”, “city”) were added to the knowledge base manually, 
since we wanted to focus on learning higher-level concepts.  One of 
the first ways we used language in this project was in tasking 
Companions to take actions in the game world.  Early on, we extended 
dialogue management in Companions to provide feedback when it 
could not completely disambiguate something on its own, as shown on 
the right.  As the abductive reasoning in Companions has been 
improved, most disambiguation now happens automatically.   
 
Multimodal references are also needed to identify regions corresponding to spatial concepts.  For this 
we introduced the idea of an interaction glyph, something drawn in a CogSketch layer overlaid on the 
simulation’s map.  CogSketch interprets any selected glyph as an interaction glyph, and interprets 
linguistic references to “this” or “that” when such a glyph is available as referring to either an entity 
within that glyph, or the region itself, depending on context.  (Learning spatial concepts, summarized 
below, used this capability.)   
 
An important kind of tasking is directing a Companion’s attention. In teaching a Companion aspects 
of combat by demonstration, both successful and unsuccessful attacks are demonstrated. A simple 
“That was bad” causes a Companion to look for events in the recent past (here, one of its units being 
destroyed), which causes it to both learn a new goal (i.e. preventing such events), and a rule for 
detecting when such goals fail, which can in turn lead to posting new learning goals.  
  

 
 

3.3. Extracting qualitative models from natural language 
As mentioned above, one of our hypotheses is that qualitative representations play a role in human 
natural language semantics. We extended the formalism of QP Frames to include type-level frames as 
well as proposition-level frames.  Here is an example of how such frames are generated 
incrementally from language: 
 
“A city produces food points.” leads to the following frame being generated: 
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Process9707 
 isa: TypeLevelProcessFrame 
 processType: Production-Generic 
 referingEvent: produce9510 ;;The discourse variable for “produces” 
 participantType: doneBy [Freeciv-City] 
       outputsCreated [(AmountFn Food)] 
 consequenceOf: (I+ (AmountFn Food) 
                         (RateFn Production-Generic) 
 
“As the population of the city increases, the food production of the city increases.” leads to adding 
 (qprop (RateFn Production-Generic) cityPopulation) 
to the frame above. 
“A citizen consumes food from the city.” produces a second type-level QP frame, describing a 
destruction event, based on its interpretation for “consumes”: 
 
Process10083 
  isa: TypeLevelProcessFrame 
  processType DestructionEvent 
  participantType: inputsDestroyed [(AmountFn Food)] 
        from-UnderspecifiedLocation 
          [Freeciv-City] 
        doneBy [FC-Unit-Citizens] 
  consequenceOf: (I- (AmountFn Food)  
                     (RateFn DestructionEvent)) 
  referingEvent: consume9987 
 
Type-level qualitative information provides an excellent medium for providing advice during 
instruction.  For example, adding just six pieces of advice, such as “Adding a university in a city 
increases its science output.” can significantly improve a Companion’s performance in the early 
expansion phase of the game (McFate et al. 2014). 
 
Narrative Function provides context-sensitive 
semantic interpretation. There is an important 
tradeoff in research on natural language processing 
between breadth of coverage and depth of 
understanding.  Most statistical NLP, such as 
bag-of-word systems, word2vec systems, and LSA, 
focus on breadth at the expense of depth.  That is, 
they can operate efficiently on large corpora, but 
cannot provide high-precision answers.  On the 
other end of the spectrum, work on deep 
understanding systems, such as semantic grammars, 
focus on depth at the expense of breadth.  This 
breadth reduction can be extreme: For example the 
Geoquery data set2 is an oft-used testbed, consisting 
of queries about geography facts from a restricted 
database.  It consists of just six predicates, which 
would expand into 23 binary predicates when 
represented in a manner more useful for incremental 
learning and reasoning.  That is far smaller than the 
number of predicates needed for a reasonable 
coverage of English semantics even for the game 
world of Freeciv.   
 
We have been exploring a new approach to achieving 
both breadth and depth.  For breadth, we use a domain-independent grammar which is mapped to 

                                                        
2 https://www.cs.utexas.edu/users/ml/nldata/geoquery.html 
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Companions. Microtheories containing narrative 
function detection rules can be combined 
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broad, general-purpose representations (i.e. the Cyc ontology and ResearchCyc knowledge base 
contents), augmented by Discourse Representation Theory (Kamp & Reyle, 1993), which provides a 
general framework for handling conditionals, logical and numerical quantification, and 
counterfactuals.  For depth, we augment these with narrative functions (Tomai & Forbus, 2009), 
which ascribe purpose to particular sentences. Our initial work with narrative functions focused on 
traditional narrative structures in fables, e.g. introducing a character.  We have found that the same 
concept can be extended to detect QP content in texts, e.g., introducing a qualitative proportionality 
(McFate et al., 2014).  
 
Conceptually, we think of narrative function rules as detectors, looking for specific kinds of 
information.  The queries that invoke narrative function rules are dynamically assembled from the 
current context by retrieving them from the knowledge base, and sorting them based on priorities 
expressed in the queries itself.  The priorities enable interleaving for efficiency, e.g. quantity frames 
are detected before qualitative proportionality frames and other frames that link them.  The queries 
are run antecedently on the analysis of each sentence as it comes in, and make abductive hypotheses to 
constrain choices of word sense and parsing choices based on which provide useful interpretations.  
 
This approach enables declarative knowledge to be used to provide top-down guidance, rather than 
having to generate a new grammar for each new domain, as semantic grammars do. Our grammar and 
parser have limitations, hence we still rely on simplified English syntax.  We view this as an 
effective interim strategy, since people often use simplified syntax when conversing with children and 
non-native language speakers, and so it provides a more natural way to communicate with AI systems 
than using predicate calculus.   
 
For example, to extract qualitative information from a sentence like “Adding a university in a city 
increases its science output.” there are two levels of interpretation, shown (partially) below. The first, 
shown in green below, is the initial language-level descriptions.  Abductive reasoning based on 
Freeciv preferences is used to interpret “city” as FreeCiv-City, “university” as that type of Freeciv 
building, and so on.  The relationships in yellow are causal relationships extracted by rules reasoning 
over the NLU output, which in turn provide the basis for extracting the type-level inference at the top 
of the diagram.   
 

 
 

ScienceOutput3662

add3486

city3528 university3501

Increase3549

FC-Building-UniversityFreeCiv-City

objectActedOn

doneBy

Denotes-Underspecified

(MeasurableQuantityFn
cityScienceTotal)

(positivelyDependsOn-TypeType (MeasurableQuantityFn cityScienceTotal)
FreeCivCity FC-Building-University cityHasImprovement)

cityHasImprovement

causes-SitProp causes-EventEvent causesIncreaseOfQuantityType
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Another way we have been testing the effectiveness of narrative function for extracting QP models 
from text is that we simplified four chapters from the Freeciv manual, to enable a Companion to read 
them.  The statistics on the simplification and the number of QP frames extracted are shown in the 
table below.  As expected, the economics chapter provides the most QP frames, since it concerns the 
causal effects of different units and properties on the economics of a civilization. Similarly, the units 
chapter provides the least quantity frames, since it is mostly a long list of specific properties of units.   
 

 
We view these as promising initial results.  However, detailed analyses of the results suggest that we 
are missing some QP frames that we ought to get (i.e. lower than desired recall).  Consequently, we 
are currently experimenting with using semantic information provided by FrameNet (Baker et al., 
1998) to improve our QP frame detectors.   
 
Our experiments to date have led us to the conjecture that there are a medium number of 
commonsense theories that provide general knowledge to support disambiguation.  The most 
common example is typology, i.e. type constraints on predicate arguments or syntactic constraints on 
verb arguments provide a means of filtering possible semantic choices.  QP theory’s notion of 
causality provides another, although we suspect we will need to add explicit temporal patterns to what 
we use already (QP theory’s encapsulated histories, which have been used to provide temporal 
schemas and representations for equations where time is an explicit parameter in other research).  
Some of these temporal schemas are interlinked, e.g. the idea of a balance, combined with surplus and 
deficit.  In Freeciv, a surplus of food is accumulated and leads ultimately to city growth, whereas a 
deficit leads to starvation.  Similarly, a surplus of production in Freeciv accumulates, leading to a 
city’s current project being finished, while a deficit leads to it being (temporarily at least) abandoned.  
Identifying a common set of such schemas and formally representing them in a domain-independent 
way, so that they can be recognized in language and their implications applied to the system’s 
knowledge in specific domains, is something that we plan to pursue.  There are other sorts of 
schemas worth investigating as well, such as mereology (i.e. the study of part/whole relationships).  
A sentence like “Cities consume food.” does not specify where the food comes from.  In Freeciv, it 
comes from the cities themselves, whereas gold to pay for maintenance comes from the civilization of 
which it is a part.  An analysis of FrameNet semantics, from an inferential perspective, should 
provide a starting point for identifying a set of such theories. 
 

3.4. Interactive Learning 
 
An important aspect of social collaboration is learning interactively from a teacher or mentor, either 
deliberately in the context of explicit instruction, or opportunistically through collaborative problem 
solving.  We have explored the former through learning by demonstration, and the latter through 
simple learning from advice. 
 
In learning by demonstration, the learner is mostly passive and observes a teacher’s actions and their 
effects on the task environment.  Typically, this is used to teach procedures as a sort of powerful 
extension of recorder macros.  Our emphasis, however, has been learning a qualitative model by 
observing how quantities change in response to actions and how those changes propagate through 
quantities.  To do this requires 1) reconstructing and recording the teacher’s action sequence from the 
accessible percepts (by no means a given in Freeciv), 2) tracking quantity and propositional changes 
using an add-list/delete-list buffer, 3) explaining pairwise changes in terms of hypothesized influences 
and effects, 4) pruning those hypotheses in a manner similar to version spaces, and 5) normalizing the 
resulting influence graph to omit chords (shortcut influence paths).  The resulting model provides a 
way for a Companion to pursue quantitative goals by searching the graph for actions that transitively 

Chapter # Sentences # Simplified # QP Frames

Economics 78 105 65

Cities 125 61 10

Combat 67 51 8

Units (subset) 21 31 5
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influence the goal quantity in the desired direction. 
 
In addition to learning qualitative influences, a Companion also learns decision points and 
achievement tasks via demonstration.  As described above, a decision task is a parametric decision 
that is periodically revisited in response to events.  These are learned through demonstration by 
detecting parameter setting actions that consistently follow related events (events with the same object 
being acted on).  An achievement task lifts and rolls up an observed action sequence that culminates 
in either making a primitive action legal (i.e., a task for achieving preconditions) or attaining a known 
active goal proposition.  During learning by demonstration, the Companion is not completely 
passive: it posts explicit learning goals in response to ambiguities and knowledge gaps, and in some 
cases it tries to reduce ambiguity by directly asking the teacher simple yes/no questions. Learning 
qualitative models by demonstration is described in more detail in (Hinrichs & Forbus, 2012a). 
 
Learning from advice is a kind of learning by being told.  Here, the Companion plays a more active 
role in playing the game and the teacher occasionally provides feedback about decisions and events.  
The example presented above of “that was bad” feedback leads to the construction of a new 
performance goal and recognition rule.  
 

3.5. Analogical Learning of Spatial Concepts 
We developed a variety of qualitative spatial representations to support spatial reasoning and learning.  
Qualitative spatial representations are quantizations of space where one or more properties remain 
constant, making them useful to distinguish from other places.  For example, in Freeciv (and military 
operations more generally), distinguishing land from water, types of terrain (e.g. forests, deserts), and 
trafficability (e.g. how well vehicles can traverse it) are useful distinctions.  More fine-grained 
distinctions are often useful, e.g. valleys, islands, peninsula. To perform spatial analyses, we extended 
our sketch understanding system, CogSketch (Forbus et al., 2011) to enable sketching to be done over 
a Freeciv map.  The underlying spatial model in Freeciv is an array of tiles, but we deliberately 
abstract away from that for many spatial computations in order to ensure generality of results.  Thus 
CogSketch is used to automatically segment the map into a variety of basic blobs (based on land/sea, 
terrain type, and trafficability), which can then be analyzed by CogSketch’s normal visual operations, 
as shown below. 
 

 
To explore learning spatial concepts relevant to maps, we identified a set of six spatial concepts that 
are of strategic importance, illustrated below. 
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How should cases be encoded for analogical learning?  This is an important, fundamental question.  
Attention is a scarce resource: No system can pay attention to everything in a sufficiently complex 
world.  Moreover, while larger descriptions may make more distinctions, if those distinctions are not 
useful, they can distract and even swamp analogical processing. Encoding decisions, for a domain 
well-understood in advance, could be hand-tuned by experts.  But we want Companions to take 
responsibility for their own encoding processes, hence we experimented with adaptive encoding.  
Maps were created with 10 examples of each concept, and these examples were entered once, 
interactively, as shown below. 
 

 
 
Our first experiment used a library of possible encoding strategies, consisting of intersecting or 
overlapping the interaction glyph with terrain, trafficability, or continent blobs.  Companions started 
out using three schemes from this library, in parallel, to encode examples.  Classification accuracy 
was used to incrementally update which encoding schemes were used, and unlabeled examples were 
classified based on voting from answers produced by current encodings.  Initial results achieved 67% 
accuracy with only 8 training examples per concept (Chance = 17%).   
 
While encouraging, our examination of the results suggested that the representations were not 
capturing enough information to discriminate between these concepts.  Consequently, we extended 
CogSketch to compute medial axis transforms (Blum, 1967), a commonly used technique in computer 
vision to produce reasonable skeletons for shapes.  The medial axis is the set of points that have 
more than one closest point on the boundary.  Each point on the axis induces a radius function, i.e. 
the distance between a medial axis point and its closest points along the exterior.  Changes in radius 
function induce further qualitative representations of medial axes, e.g. segments where the radius is 
constant, increasing, or decreasing.  Junctions in these axes can be described as sources or sinks, 
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depending on the direction(s) in which the radius function is narrowing.  This representation is called 
a shock graph (Siddiqi et al. 1999).  Medial axis transforms for three terrain types are show below.   
 

 
 
Another distinction we explored is the idea of severed blob encodings. These are based on the 
observation that important relationships may be between parts of a blob – specifically, the parts of the 
blob produced by segmenting it with the interaction glyph - so carving up its interior and exteriors and 
computing relationships between them could prove important.  The image below shows an example 
of a severed blob representation. 
 

 
 
In this case, the piece of the land blob that lies on the interior of the interaction glyph is smaller than 
the adjacent pieces of land on the exterior, and its convex hull overlaps two separate interior pieces of 
water blobs. 
 
This suggested reorganizing the library of encoding strategies into a 3x3 table, with 
continent/terrain/and trafficability as one set of choices, and whole blobs, severed blobs, and blob 
skeletons as the other set of choices.  A simple decision-tree can then be used to detect which 
strategy is likely to be more reasonable, e.g. if an interaction glyph overlaps multiple continent blobs, 
then a strategy based on them is most appropriate.  This provided an improvement of 10% to 77% 
accuracy, using 10-fold cross validation, one example per fold (McLure & Forbus, 2012).  
Empirically, only four of the possible strategies were chosen – all three continent strategies and the 
whole/trafficability strategy.  In a domain where maps have a wider range of terrain properties, we 
expect the terrain-based encoding strategies would see more use.   
 
While a definite improvement, there were several aspects of this approach that suggest further 
improvements.  First, while decision trees can be learned from data, it would take a substantial 
amount of experimentation to generate enough data to construct such a tree automatically.  That does 
not seem to be a reasonable approach for learning to encode in a rapidly changing world.  Another 
issue is that, while analogical generalization helps provide better transfer than simply analogizing to 
concrete examples, there is nothing in SAGE that promotes discrimination. Finally, a minor matter, 
further examination of the kinds of terrain actually appearing in Freeciv maps was that valleys were 
quite rare, whereas bays are quite common, so we replaced valleys in our data set with 10 examples of 
bays.   
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Our next experiment was to extend SAGE to handle near-misses, to improve discrimination.  The 
original concept of a near-miss is due to Winston (1970), where he showed that a teacher-supplied 
negative example could improve learning of a structured description.  This is an intriguing idea, but 
as formulated, it assumes that the system has just one representation for a concept, that the teacher 
knows this internal representation, and that the teacher can find/construct an example with a single 
important difference.  By contrast, McLure et al. (2010) figured out that SAGE can be used to find 
its own near-miss examples, as follows.  Suppose the teacher provides an example with a positive 
label.  Suppose further that MAC/FAC is used, not just over the case library for the label, but also for 
the case libraries with contradictory labels.  Then an example or generalization retrieved from a 
different label must constitute a near-miss for that example.  In such cases SAGE then formulates 
both positive hypotheses (i.e. statements that must be true of any example) and negative hypotheses 
(i.e. statements that must not be true of any example).  In the case of a simple Blocks World arch, for 
example, the top block must be a block, not a trapezoid, and the two supports cannot directly touch 
each other.   
 
An experiment in McLure et al. (2015a) demonstrated the effectiveness of near-miss learning on the 
Freeciv geo-spatial dataset.  Using 60 examples and a 10 fold cross-validation test, SAGE with 
near-misses achieved 77% classification accuracy, whereas SAGE without near misses achieved only 
62%. (Again, chance is 17%.)  Using near misses showed a 15% improvement in accuracy over 
setting SAGE to always generalize, and a 24% improvement in accuracy over using pure 
nearest-neighbor, based on similarity via MAC/FAC (both p < 0.05, using a one-tailed paired t-test). 
 
While this is encouraging, the small number of spatial concepts, and their relative simplicity compared 
to general hand-drawn sketches suggested that we needed to broaden our investigations, to ensure that 
our techniques are robust and can scale.  Consequently, we started experimenting with the Eitz et al. 
(2012) sketch corpus.  This corpus consists of 20,000 sketches, divided into 80 sketches for each of 
250 concepts.  Below is an example of some of the sketches from this corpus. 
 

 
 
This is an extremely challenging corpus.  Using pixel-level features and standard machine learning 
techniques, typical performance on this corpus is 56%.  Human performance is only 73%, indicating 
that these answers are by no means universally agreed upon.  (One team claimed a result higher than 
human agreement, but they used timing information involving strokes rather than just visual properties, 
so we ignore their results here.)  Using an initial set of multi-level encodings (i.e. edges, edge-cycles 
(McLure et al., 2011), and objects) on a subset of 10 concepts, using 8 fold cross-validation, SAGE 
was able to perform with equivalent accuracy to the ML baseline results.  While we were encouraged, 
this only worked on visually simple concepts: Visually complex concepts caused heap blow-outs3. 
 

                                                        
3 Initial attempts to engineer our way out of heap bloats led to some significant improvements in the 
Companion architecture, including an agent restart capability that enables worker agents to restart 
when heaps get too large, which has enabled Companions to run for days at a time on larger 
experiments. 
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A close analysis revealed several problems with our initial encoding.  First, the redundancy of the 
multi-level encodings was hurting, not helping.  Second, the encodings themselves were massive.  
Part of this is due to the visual complexity of the examples, as shown below.   

 
 
Note that while SME operates in polynomial time, the size of the initial match hypothesis forest grows 
worst-case as the square of the number of facts in the two cases increases.  Matching two bicycles, 
for example, could lead to 1.4 million match hypotheses.  That is far beyond what SME was intended 
to handle.   
 
The message is clear: One constraint on encoding strategies should be that the number of facts that 
they can produce must be capped.  And this size limitation must be systematic, i.e. similar examples 
should be re-represented in similar ways, if they are going to match.  This suggests looking again to 
human vision, and how it might handle such problems.  One technique that people use is detecting 
textures – repeating patterns of similar things should themselves be abstracted away, into more 
concise descriptions.  For example, much of the complexity of the sketches of bicycles, grenades, 
and turtles can be captured concisely by representing repeating structure as textures.  In computer 
vision, Ising models are commonly used to group pixels into similar regions.  In McLure et al. 
(2015b), we applied Ising models, but over edge-cycles (closed regions) in the planar network of 
edges computed via CogSketch, as illustrated below, with an example of a pumpkin. 
 

 
 

Ising models produce substantial reductions in number of facts (5% to 44%, depending on concept) 
and number of entities (11% to 58%, depending on concept).  We took 10 simple concepts and 10 
complex concepts, the latter which couldn’t even be encoded previously with our prior methods.  On 
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the simple concepts, we obtained results that were comparable with our prior accuracy, although with 
the more complex concepts accuracy topped out at 50%.  Consequently, we are exploring additional 
techniques to detect and further compress relational structure in meaningful ways.  Our hypothesis is 
that, with the appropriate visual representation techniques, we can achieve human-level performance 
on this dataset using visual information alone. 
 
 

3.6. Self-guided learning 
The efforts on learning by demonstration and learning by instruction both involve Companions 
formulating their own learning goals, and using learned qualitative models to formulate goals to drive 
subsequent behavior.  This new model-based approach to formulating strategies leads to formulating 
goals based on the qualitative model, using type-level representations, and indexicalize them so that 
they can be reused across a dynamic world (Hinrichs & Forbus, 2013). 
 
We made several architectural improvements to Companions to support them running their own 
experiments in the future, a necessary prelude to more extensive experiments on self-guided learning.  
First, we generalized the long-term memory agents in Companions so that analogical reasoning and 
learning can be applied more broadly.  Here is what the Companions architecture looked like before 
these extensions: 
 

 
 
 
As an engineering matter, Companions are implemented via a distributed agent architecture, whose 
agents communicate via the KQML protocol, over sockets (when running across multiple machines) 
or directly (when running on a single computer).  This allows small Companions to be run on a 
decent laptop, but running across many cluster nodes when required for larger-scale experiments.  
Here is a breakdown of the roles of the agents: 

 The Interaction Manager handles multimodal communication with users.  This includes 
natural language understanding, simple phrase level generation, and interactions via 
sketching.  The sketch agent provides a wrapper around CogSketch to integrate it into the 
architecture, via messages corresponding to events. 

 The Session Reasoner performs domain reasoning.  This is useful to split off because it may 
be engaged in heavy processing while the Interaction Manager is handling user interactions. 

 The Tickler provides a long-term memory system for the Session Reasoner, which provides 
analogical retrieval and generalization services for domain learning. 

 The Executive monitors the other agents, and can pause or even reboot them, if they have 
gone awry. 

The diagram below shows the extensions we made to the architecture in the course of this project. 
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The key changes are: 

 Ticklers can now be associated with other types of agents, not just the Session Reasoner. 
This is intended to support experiments on analogical learning of interaction strategies and 
analogical learning about a Companion’s own internal processing, e.g. how long different 
tasks take, failure rates of particular approaches, and other internal data. 

 Worker agents can be given tasks to be conducted in parallel on other machines, thereby 
harnessing more parallelism.  Worker agents are spawned by the Executive, by monitoring 
the agendas of the Session Reasoner and Interaction Manager, identifying jobs which can be 
handed off to a pool of workers. 

These changes have enabled us to formulate new plans, e.g. a method for K-fold cross-validation 
experiments has been developed into a parameterized plan that Companions will be able to use for 
conducting their own learning experiments.  This plan has been amply tested by the experiments 
described earlier in this report, whose design were specified by us.    
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Manuscripts not yet published 
1. Forbus, K. (in preparation). Qualitative Representations: How People Reason and Learn about 

the Continuous World.  Book in progress, expected to go to publisher in 2016. 
2. Forbus, K., Ferguson, R., Lovett, A., & Gentner, D. (in press). Extending SME to handle 

large-scale cognitive modeling.  Cognitive Science. 
3. Forbus, K., McFate, C., & Hinrichs, T. (in preparation). Narrative function for extracting 

knowledge in learning by reading. 
 
 
Significant Collaborations 

 Google is funding internal experiments to use a version of SME with one of their natural 
language systems, to see if a hybrid symbolic/statistical system can provide new capabilities 
for language processing tasks. 

 IBM’s T.J. Watson research center is discussing with us how to incorporate both analogical 
processing and qualitative models in their next-generation Watson research. 

 Our lab is a founding academic partner of the Microsoft Research psi consortium, an as-yet 
unannounced effort to develop open-source tools for new natural interaction technologies. 
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